

Demonstrating Synergies in Combined Natural and Engineered Processes for Water Treatment Systems



# Subsurface Monitoring Device Real time monitoring of the dynamic of salt water/fresh water interface

## Challenge : Protecting coastal aquifers

In coastal regions, saltwater intrusion can penetrate several kilometers inland after a drop in the piezometric level caused by over exploitation and/or droughts. This phenomenon needs to be monitored sharply otherwise it can put in danger then region's water supply and economic activity.



## SMD and operating principles

A SMD (Subsurface Monitoring Device) is a geophysical tool installed in a PVC piezometer used to constantly record water's electrical conductivity along the aquifer's vertical axis. It provides a real-time picture of the position and evolution of the saltwater intrusion.



Monitoring the saltwater intrusion and understanding of its position is a key element in ensuring optimum coastal water resource management

### **Demonstrated solution**

The saline intrusion dynamics is revealed from this SMD image of the coastal aquifer thanks to more than 2000 automatic and successive water conductivity profiles.

Water Conductivity (µS/cm) - slp1



gravel

1400

• Data acquisition frequency : up to 15 mn • Power supply: solar or 220 V Max depth : 300 m • Measurement points : up to 60 pts • Borehole diameter : 31 mm





Four years of daily EC logs from a coastal aquifer in Charentes Maritimes (France) (August 01, 2011 to november 01, 2015).

#### Conclusion (customer testimonies)

- "... automatic EC logs, used by SMD, are considered to be the most effective methods for measuring the interface between freshwater and saltwater." (Nienhuis P., 2010, SWIM21).
- "... furthermore, SMDs have demonstrated their robustness and the repeatability of their measurements in determining the position and the

- 1. An electric current is injected between two electrodes to measure resistivity in the environment around the unit.
- 2. Repeated current injections in descent to obtain a resistivity profile.
- 3. Automatic conversion of the total resistivity signal into water conductivity
- 4. A water conductivity profile is obtained...
- 5. Data are sent and displayed via web application

# Illustrations : AquaNES demonstration site, Agon-Coutainville, FR



dynamic of the Saltwater intrusion." (Tal A 2017, AIH).

- Monitor in real time and automatically the Aquifer Recharge efficiency
- No drift in the measurements and the longevity of the monitoring system thanks to electronic systems located in the head unit
- See your data every where on every display 7/7 24/24

### Contact

Denis NEYENS Geophysicist @ imaGeau T +33 (0) 6 45 40 01 86 E denis.neyens@imageau.eu

#### • **Tima** Geau écurisation des ressources en eau

#### **AN INTEGRATED SOLUTION**

"INSTRUMENTATION & WEB APPLICATION"

Acquisition Box

Electrode

for monitoring the position of the saltwater intrusion in real-time.

# www.aquanes.eu

The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 689450







Solar system